脑

机

接

口

未来产

业

集聚

区

脑

智

天

圳

协

作

项

成

果

道,形成产业聚集合力。

在上海,前沿技术给抑郁症、厌食症、 失明患者甚至脑肿瘤患者带来的,远不止 一线生机,而是一场新生

脑机接口

离大众受益有多近

本报记者 马亚宁

让失明者能够看清路牌

"当电刺激在视觉皮层唤起稳定的彩色 '光幻视',再将这些光点连成清晰的复杂图 形时,我们知道,失明患者'看见'世界的愿 望,离现实又近了一大步。"近日,国内首个 脑机接口未来产业集聚区举行的"链接者" 系列沙龙第一期——"脑机智汇"上,上海明 视医疗科技有限公司创始人刘冰带来了植 入式脑机接口视觉重建技术领域的好消息: 全球首例"复杂图形+颜色"视觉重建IIT(首 次人体试验)实验已经成功完成。

"讨去的视觉重建实验,大多停留在让 患者感知单一光点或简单轮廓上,而我们这 次实现了'复杂图形+颜色'的双重突破。"刘 冰在演讲《基于植入式脑机接口的视觉重 建》中,带来了一系列实验数据:科研团队通 讨在大脑视觉相关皮层植入电极,给予精准 电刺激后,受试者不仅能稳定感知到"光幻

视"(即大脑接收到刺激后产生的视觉感 受),而且每次刺激唤起的颜色高度一致;更 重要的是,团队将多个单点"光幻视"有序连 接,成功合成了带有颜色的复杂图形,且实 验效果重复稳定。

这一突破的意义,远不止"全球首例" 的标签。据世界卫生组织相关数据,全球约 有4300万名完全失明者,其中我国占比近 五分之一,达869万人,且每年新增病例45 万。"对于眼球已摘除或视神经严重受损的 患者,传统的药物治疗、人工视网膜技术都 束手无策——人工视网膜需要完整的视网 膜结构作为基础,而这类患者恰恰失去了这 一前提。"刘冰解释道,此次明视医疗采用 的皮层植入式脑机接口技术,直接绕过受损 的视觉诵路,通过电刺激大脑视觉皮层实现 视觉重建,相当于为失明患者开辟了一条

"全新的视觉通道"。

人的感知80%以上来源于视觉,恢复视 觉对失明患者而言是"绝对刚需"。过去,全 球脑机接口视觉重建的研发主要由欧美团 队主导,现在中国科研团队的突破正在改变 这一格局。相较于马斯克 Neuralink 的视觉 重建系统,"我们是真正针对医疗未来应 用"。而且,这套系统不仅可以做视觉重建, 还可以重建感知觉、听觉,以及做一些与闭 环神经调控相关的重建。

目前,明视医疗已在上海注册全资子公 司。作为产品研发与临床转化中心,今年已 完成4000万元融资,明年计划融资数亿 元。"资金将主要用于1024通道系统的行检 准备和临床试验推进。"刘冰介绍,按计划, 该系统将于2027年底正式进入行检,2028 年启动更大规模的IIT实验,"我们的目标是 让患者最终达到0.3—0.5的视力-医疗上认可的、能满足基本生活需求的视力 水平,比如看清路牌、识别人脸"。

治各种脑病的"终极"方案

在近日举行的"为国担当 勇为尖兵"先 进事迹报告会上,去年底入选《自然》十大科 学进展的中国首例脑机接口的亲历者董辉, 与华山医院院长毛颖以及主刀医生吴泽翰 一同亮相。一年来,全植人脑机接口处的电 极片,让这位"连名字都写不了"的高位截瘫 患者,已能歪歪扭扭写下自己的名字和"谢 谢"。而且,通过脑机接口探入颅骨、贴合在 硬脑膜外的电极,持续采集脑电,再通过康 复训练不断磨合"脑"和"机",算法已越来越 能听懂小董的心声,甚至部分身体神经还出 现重塑迹象。

"未来,不仅要帮截瘫患者站起来,更要 让盲人'看见',失语者'说话',甚至唤醒昏 迷者,"这条路很长,但通向未来。"正如华山 医院毛颖院长所言,脑机接口正在上海各大

医院临床一线,瞄准从"脑"出发的疑难病 症,或阻碍重症治愈的"卡点",寻找新型武 器。上海市脑机接口临床试验与转化重点 实验室主任、复旦大学神经外科研究所副所 长吴劲松,长期聚焦脑瘤手术领域。在他看 来,脑癌可以断根的,但脑部手术必须要平 衡神经功能状况和生存。

"切得多、病人活得长;可切得多,病人 瘫掉了、不能说话、生活质量变差了,这就是痛点。"为实现脑功能重建,他带领团队将 目光投向脑机接口领域。今年3月,团队与 上海阶梯医疗合作完成首例植入手术,神经 植入体直径接近马斯克的 Neuralink, 厚度却 比之薄1/3,颅骨内埋藏更服帖,头皮摸不出 来。目前已完成3例,即将完成第4例,马上 就要完成最低的样本量。"术后,首例患者开

始进行脑电遥控光标移动很成功,所以我们 科学家很兴奋。原来只在猴子身上看到效 果,现在在人的身上也可以复刻。"据透露, 科学家们未来打算尝试让患者通过脑机接 口控制具身智能,"很快,我们就会有新的运 动控制成果报告出来"

在语言重建上,上海市脑机接口临床试 验与转化重点实验室与脑虎科技合作,实现 了单字四声调、声调句子解码,"这是汉语所 独有的,国外的研究成果没有办法照用" 与此同时,医学科学家们还跟脑虎科技合作 研发"言语想象解码"全植入设备-无线通信、胸壁下埋藏的供电及无线发射装 置,头部埋藏的是神经植入体。"该脑机系 统,可以实现模拟对外发声,实时在线解码 等。不用说话就能与人沟通,覆盖6000多 个常用汉字。"据透露,该装置很快就要进入 临床试验。这意味着,不久的将来,"只要心 理感应,就可以跟人心意相通,心心相印。

来,人类真正了解抑郁症的本质和发病机制, 还有很长的路要走。不过,随着脑机接口从 技术研究到临床探索的持续优化和拓展,会 有更多的应用场景,例如帕金森、老年痴呆、 渐冻症、脊柱损伤、脑肿瘤、脑卒中等患者。 这将为更多脑疾病患者带来新希望的同时, 还可以从更细小的时空维度观察大脑意识本 质,成为未来脑科学研究的重要科学工具

脑机接口

从临床前沿的星 星之火到千家万户的 广泛受益,中间少不了 脑机接口产业形成燎 原之势。在上海新虹 桥国际医学中心,我国 首个脑机接口未来产 业集聚区"脑智天地" 建设如火如荼。

上海脑机接口未 来产业集聚区由市科 委牵头,闵行区、华山医 院、临港集团和上海国 投共同建设,以"全球脑 机接口技术创新策源 地、产业融合示范高地 和国际合作枢纽"为目 标,构建"一个核心区+ 一个生态圈+一张协同 网"的发展格局,重点强 化临床转化、概念验证 和孵化加速三大核心功 能,旨在逐步形成国家 级脑机接口未来产业发 展共同体。自2025年6 月29日正式揭牌以来, 集聚区已落地多项实 质性成果,产业培育 "加速度"凸显。

在关键平台搭建 上,集聚区依托国家神 经疾病医学中心(华山 医院)和中国科学院脑 智卓越创新中心,建成上海 市脑机接口临床试验与转化重 点实验室。该实验室聚焦两大方 向:一方面加速脑机系统的临床试验 与产业化落地,打通技术从实验室到临床 的关键环节;另一方面以临床需求为导向, 孵育颠覆性创新技术,承接国家重大科研 任务,为产业发展提供核心技术支撑。

上海新虹桥国际医学中心建设发展有 限公司董事长顾耀强先生介绍,依托链接 长三角的区位优势与丰富的临床资源,上 海新虹桥国际医学中心已经成为承接上海 市脑机接口产业战略功能的核心载体,计 划于2030年争创国家技术创新中心,引育 超过10家头部企业,主导制定安全标准、实 现上下游产业链的国产化。脑机接口未来 产业集聚区将以先行启动区载体为依托.布 局四大功能平台---脑机接口临床转化中

> 心、科研转化中心、概念验证 中心、高质量孵化器。同时, 整合区域内研发、生产、临床、 服务等多元化产业配套资源, 构建集"产、学、研、医、政、金、 服、用"于一体的产业链生态 圈,助力脑机接口未来产业的 快速发展。

此外,上海虹桥国际中 央商务区管理委员会也正全 力打造海外发展服务中心: 国际人才服务中心、海外贸 易中心三大平台,并携手国 际专业服务机构,推动脑机 接口产业走向国际。

探索抑郁症的大脑"密码"

在瑞金医院,脑机接口的侵入式与非侵 入式两条路线并行着。据瑞金医院脑机接 口及神经调控中心主任孙伯民介绍,团队与 企业共同研发的装置突破了常规皮层刺激的 局限,聚焦皮层下深部刺激;非侵入式领域,研 发神经调控治疗实现闭环设计,推出了居家穿 戴式设备,"无需开颅,对轻中度患者来说接受 度更高,这是未来临床脑机接口的重要方向, 毕竟大部分患者不愿接受开颅手术"

在临床应用上,临床医生、科研人员和 技术工程师一道,正在将脑机接口的技术探 索覆盖多类难治性疾病。例如,在神经性厌 食症治疗上,瑞金医院通过立体定向手术结 合脑形态学分析,首次揭示了神经性厌食症 患者体重恢复的神经机制,并开发侵入式脑 机接口装置。该装置针对难治性神经性厌 食症(体重过低且常规治疗无效)患者,通过 调控大脑特定区域(如伏隔核)实现体重和 情绪的改善。"有效率达到90%以上,成功攻 克了这一高死亡率疾病的治疗难题。"上海

交通大学医学院附属瑞金医院孙伯民教授 团队长期致力于脑机接口与神经调控的研 究,是全球最早运用DBS(脑深部电刺激术)治 疗难治性强迫症、抑郁症的团队之一,最近两 年还刚刚完成难治性抑郁症临床试验

"而且,是真正用脑机接口的装置来做 的。"据孙伯民教授透露,在标准对照交叉双 盲实验中,侵入式脑机接口方式治疗对重度 患者疗效立竿见影。在此过程中,研究人员 还能记录脑深部的电活动。"这或许有机会 让我们真正了解抑郁症患者的大脑到底与 正常大脑有什么不一样。"目前,科学家们主 要是在大鼠的脑子里做抑郁症相关研究。 实际上,抑郁症在人身上治疗后,得到的信 息非常重要,全球目前只有两三个中心在做 人脑的抑郁症相关数据研究。

与此同时,精神分裂症相关研究和治疗 也在深入,"主要针对幻听等阳性症状,探索 其生物学基础与治疗靶点,不过目前仍处于 临床探索阶段,难度不小"。在科学家们看

伤■