2025年8月26日

破垄断破纵知破天际 上海科创再攀高峰

科技进步奖特等奖

"新一代运载火箭表面特种

在探索浩瀚宇宙的征途上,新一代运载火 箭使命艰巨。火箭周身穿什么"铠甲"——表面 防护材料,至关重要。因为,它既要承受500℃

> F颁发的2024年度上海市科技讲步 打造坚不可摧的"防护铠甲",能同 成功实践了"超支化聚合物涂层-体化防护"的全新路线,彻底颠覆传 示引领性的"中国方案",为长征系 列等新一代运载火箭的研制与批量 生产,提供了坚实可靠的支撑。

勇闯航天材料"无人区"

披覆在火箭表面的防护层,是守护火箭安全 升空的关键"屏障",它要彻底保护好卫星整流罩

不怕高温极寒 运载火箭的"中国铠甲"

和低温燃料贮箱这两大"要塞"。卫星整流罩位 于火箭最前端,当火箭高速穿越稠密大气时,表 面温度瞬间飙升至500℃以上。如此高温下,构 成火箭主体的铝合金和复合材料的强度会急剧 下降,舱内精密的仪器设备也会因高温"罢工" 国内外普遍采用手丁粘贴防热软木片的方案,这 种方案工艺繁琐、效率较低,质量难以精确控制 目软木片极易吸湿"鼓包""脱粘", 返修室极高 而低温燃料贮箱里,是新一代火箭采用的液氧 等招低温燃料。燃料加注后,贮箱壁温度骤隆 至-183℃。传统贮箱采用的多层包覆防护技术不 仅重量大、结构复杂,同样面临易脱粘分层的困 境。为了克服上述问题,新型号火箭设计中取消了 绝执尽 学试将防护涂层直接喷涂在冰冷的金属船 壁上。但普通防护涂层在如此极寒下会变得脆 如薄冰,极易开裂、剥落失效,丧失保护作用。

"冰火交织"的严峻挑战如"达摩克利斯之 剑",严重威胁着火箭和卫星的安全。然而,颠覆 性转折在上海交通大学校园里悄然孕育。上海 交通大学朱新远教授团队,长期深耕于聚合物合 成的科学前沿。该团队由我国著名高分子化学 家颜德岳院士奠基,如今颜院士仍担任团队顾 问。早在2009年,朱新远教授团队就取得了一项 重要突破——发明了杂化聚合制备超支化聚合 物的新方法,但当时苦干没有具体的工程需求牵 引。"平行世界"里,张崇印博士2013年从上海交

大毕业后,加入我国运载火箭两大总装基地之一 的上海航天设备制造总厂有限公司,2015年开始 负责上海航天设备制造总厂有限公司新一代火 箭高分子防护材料的研制工作,急需破解整流置 和贮箱的防护难题。

师生情缘与家国使命共振,双方讯谏联合上 海宇航系统工程研究所等航天核心单位,组建了 一支产学研用深度融合的攻关团队,聚焦前沿的 超支化聚合物技术应用干解决火箭防护难题。 在上海市科委的推动下,2018年,上海航天特种 环境高分子功能材料工程技术研究中心正式获 得批复。中心汇聚了高分子功能材料领域的顶 尖智慧,形成"基础研究源头创新-核心技术攻 关-丁程化应用"的完整闭环创新链条。在这个 体系中,上海交通大学潜心基础技术研究和新材 料开发: 上海宇航系统工程研究所聚焦航天器的 热环境分析、仿真与地面试车验证:而上海航天 设备制造总厂有限公司则自负着将防热材料从 实验室配方转化为可靠产品的重任,攻克工程化 应用的"最后一公里"。

神奇涂层防护火箭表面

面对新一代火箭表面防护的"冰火两极",团 队提出了一个极具颠覆性的构想: 抛弃传统的 "拼拼补补",采用一体成型的防护涂层!这种方 案只需一次喷涂即可成型,彻底消除拼缝隐患,

实践发现,要打造满足火箭严苛要求的"防 护铠甲",难度超乎想象!这种涂层必须"粘得 牢"(与金属/复合材料基体结合力超强)、"耐极 温"(500℃以上的高温考验、-183℃低温冲击不开 裂不失效)、"喷得好"。为了获得这些性能,必须 在涂料中添加大量的功能填料(如耐高温、隔热 增强的微粒)。但当填料超过一定比例时,涂料 瞬间变得"浓稠如泥",根本无法喷涂。同时,填 料也极易抱团(团聚),导致涂层内部应力集 中,与基体的粘接力急剧下降。如何突破"粘得 牢、耐极温、喷得好"的三重枷锁,成为横亘在团 队面前的最大难关。

团结就是力量! 跨团队的合作, 让科学家们 找到了堪称"艺术化"的材料设计之路。超支化 种高分子,以往超支化聚合物合成依赖单一聚合 机理,易交联、结构难调控,无法实现工业应用。 团队另辟蹊径,创造性提出两种或多种聚合反应 协同进行的杂化聚合新思想,成功将传统合成的 "等活性"转化为"非等活性"调控,抑制了交联副 反应,实现了结构精准定制的超支化聚合物的可 控制备与规模化生产。

胶",其特殊结构能高效包裹、分散大量填料,大 幅降低体系粘度,使其"喷得流畅";同时其丰富

的末端官能团又能与基体材料通过多种方式形 成强力结合,如同八爪鱼般牢牢抓住基材,使涂 结构就像自带弹簧, 在受到应力冲击的时候通过 自身分子内部空间的收缩来进行缓冲, 当应力消 失后,分子又能恢复到原始状态,这种与生俱来 的优异韧性赋予涂层抵抗极冷极热冲击而不开

"然而,并不是所有的超支化都可以展现出 上述性能,并且在不同的应用环境需要开发相 应的超支化结构,这样才能对症下药。"朱新边 教授说。团队借助AI的力量,通过计算模拟并 搭建相应的数据模型,在短时间内推算出所需 的超支化结构,极大提升了开发效率。最终,团 队成功攻克了超支化聚合物可控制备、高掺杂 界面调控、极端环境耐受、机器人精准喷涂四大 核心技术堡垒,实现高填料掺杂量下航天涂层 依然具备强结合力、卓越耐极温性能和优异喷

这不仅是一套技术,更是一套完整成熟的新 代云载火箭表面防护解决方案,为中国的火箭 披上了一层高效可靠的"中国铠甲" 支撑着中国 航天迈向更远的深空。该技术已成功应用于多个 计实现多次(二十余次运载领域)航天应用。

本报记者 马亚宁

科技进步奖一等奖

防护涂层技术已成功应用于

多个型号运载火箭

"多模态分子影像设备的 自主研发与产业化'

多模态分子影像设备是当今最尖端的医学 影像设备之一,是肿瘤、心脏、神经退行性等重大 疾病精准诊疗的利器。过去几十年,其核心技术 介格高昂、普及率极低,严重影响国人疾病诊疗 需求。今天上午举行的上海科学技术奖励大会 上,上海联影医疗科技股份有限公司李弘棣博士 带领团队完成的《多模态分子影像设备的自主研 发与产业化》,荣获上海市科技进步奖一等奖。

世界首台全身PET/CT 实时观测提升临床水平

▲ 团队部分成员实验室会影(右二,

朱新远教授,左二:张崇印博士)

设备领域的自主可控,对"健康中国2030"及我 国医疗产业发展具有重要战略意义。

据介绍,该项目突破了多模态分子影像全部 核心技术,攻克了大尺寸LYSO晶体生长、PET专 用芯片、高性能数字PET探测器、高清PET图像 重建等关键技术及一体化PET/CT和一体化 PET/MR 一系列集成关键技术, 实现了业内最佳 空间分辨率及时间分辨率的双重突破,解决了 "10倍部件数量,40倍数据量,100倍计算量"的 工程挑战,显著提升了临床应用水平。项目研发

性疾病、新药研发、癌症微转移等医学前沿研究 提供全新技术支撑,助力医学讲先,引领了国际 分子影像行业的技术趋势。全身PET/CT被英国 物理学会评选为"2018全球十大科学突破",脑 专用PET荣获2024年度北美核医学年会最佳影

项目共获发明专利270项,发表论文380篇, 获国家三类医疗器械注册证13项,FDA和CE认 证12项,完成全球装机500余台,覆盖了中国、美

改写全球抗癌药格局 中国创新药驶上核心赛道

国智造"逆向出口海外市场,赋能"一带一路"卫 生健康共同体。该项目填补了我国在多模态分 子影像领域的空白,带动了全产业链上下游协同 发展,助力我国实现高端医疗设备自主可控,大 幅提升精准诊疗可及性,使我国多模态分子影像 设备从完全依赖讲口转变为技术领先, 重构国际 产业格局,将我国分子影像技术提升至国际领先

自然科学奖一等奖

'高分子液晶致动材料'

线下整齐排列、灵敏"起舞",还能被精准操控,神 的桥梁,复日大学智能材料与未来能源创新学院 的俞燕蕾教授率领项目团队历时数十年研究,从 分子结构源头破局,实现从分子设计到器件构建 的全方位创新,创制具有优异形变性能和强大致 动能力的高分子液晶致动材料。这项研究成果 重新定义了智能材料的未来图景,为软体机器人 和智能医疗提供了创新方案,获得2024年度上 海市自然科学奖一等奖。

灵敏、会动、有韧性的新材料

在自然界中, 音角触手柔软如绸缎亦能瞬间 收紧完成精准抓握,这样的致动能力也是科学家 塑性,又具有液晶分子对外界刺激的灵敏响应, 创新性地设计出基元有序排列的高分子液晶材 料,突破了传统高分子液晶致动材料内部分子排 列松散、需通过化学交联固定结构、无法兼容通

新材料拥有堪比天然蜘蛛丝的力学性能,而 且还可制成纤维、薄膜甚至复杂三维结构;遇光 刺激时,分子整齐运动,能够带动整个材料收缩、 弯曲。这项研究登上《自然》杂志,引发了全球科 学家的广泛关注。

开启引领前沿研究热潮

传统高分子液晶致动材料受限于分子结构

动力,在构筑致动器件时往往力不从心。高分子 液晶致动新材料分子的结构是可设计的,项目团 队通过对分子结构和排列方式进行设计,将材料 模量变化范围覆盖三个数量级跨度,使之能与塑 料、橡胶等多种材料无缝结合,构建复杂三维器

破局分子结构 引领智能材料未来

这一策略很快得到国际同行的借鉴和应用, 由此开启了高分子液晶智能致动研究的新方向, 推动了高分子液晶材料新体系的构建。

高分子液晶致动新材料的应用被寄予很高 的期待。项目团队利用高分子液晶致动新材料 构筑出具有光响应特性的三维微管致动器,首次 实现了微量液体的全光控输运。这款能在微尺 度驭"水"的神器利用微管光照形变产生的毛细

液、乙醇、汽油等各种流体进行精确操控。这项技 术具有非接触、无污染等特点,有望在生物医药设 备、生化检测分析、微流反应器等诸多领域得到应 用,被称为"具有直下开创意义的优秀成果"。

高分子液晶致动材料的创制是新材料的高 光领域,俞燕蕾教授团队代表中国基础研究的实 力站在国际研究的前沿,实现了从跟跑到领跑的

如今,在不断增强自身团队学术创新力的 同时,俞燕蕾教授也致力于提升中国科研的国 际影响力,多次受邀在顶级国际学术会议和期 刊上报告或撰写评述,推动了中国在该领域的

科技进步奖一等奖

"中国一类新药呋喹替尼 的自主研发与产业化'

在全球抗癌药物研发的版图上,中国曾长 期处于跟随者地位。2008年前,国内新药研发 落后三重困境,尤其在靶向治疗领域,VEGFR 抑 制剂等核心赛道被跨国药企垄断。来自上海张 江的和黄医药团队迎难而上,聚焦当时全球最 了一场历时11年的创新突围。

今天上午,这场漫长的"创新长跑"终于跑 上了上海科学技术奖励大会的领奖台——和记 士主持的《中国一类新药呋喹替尼的自主研发

与产业化》、荣获2024年度上海市科技讲先 奖一等奖。比鲜花和掌声更重要的是,呋 的中国结直肠癌靶向药,目前已在全

的美国国立综合癌症网络(NCCN)治疗指南结 直肠癌三线治疗药物推荐首位。 小小分子式跨越"珠峰"

20年前,在辉瑞工作16年的苏慰国博士刚刚 回国,加入和黄医药。一天他在咖啡馆里随手拿 来一张餐巾纸,画下了一串分子式,其中一个就是 呋喹替尼。走出咖啡厅,这个小小分子式并没有 随念头一闪而逝,苏慰国博士带领和黄制药的年 轻人, 誓要成药。当时的国内, 中国创新药几乎空

白,"一个新药平均需要十年,十亿美元投入"的基

"我们现在化学部、生物部的总监和项目负 责人,很多都是苏博士当年一手从学校招聘并 培养起来的。"就是这样一群从各高校来的本土 年轻人, 汇聚在和黄医药最初的"四号楼"——临 床前研发大楼,将苏慰国写在餐巾纸上的分子

到2008年在公司正式立项,它有了一个像 样点的代码"HMPL-013", 意思是"和黄医药第 13个进入临床阶段的药物候选化合物";等到 "HMPL-013"走过早期临床开发,它拥有了一个 通用名"呋喹替尼"。最终,它成为一个足以让 所有中国创新药深感骄傲的名字,是上海首个 在美获批上市的小分子抗肿瘤原创新药。在中 国生物医药自主创新之路上, 呋喹替尼也成为 一座地标式的里程碑。

改写全球抗癌药格局

负担。作为我国首个从早期发现到临床开发全 链条自主完成的抗肿瘤原创新药,这个以"呋喹 替尼"命名的创新分子,以喹唑啉为母核,在侧 链上创新性地引入苯并呋喃结构,进一步引入 酰胺的结构片段,创新性地通过对药物脱靶活

2013年,和苗医药率先在国内前瞻性设计 '诵讨随机对昭试验讲行剂量优化"的方法来确 机对照试验剂量优化方法"指导原则发布9年 诵讨此方法确定的推荐剂量上市后被验证安全 有效,成为全球治疗剂量。在基于中国人群的 及以上治疗,mOS长达9.3个月,较安慰剂组显 著延长了2.7个月,降低了死亡风险34%。

2018年9月, 呋喹替尼率先在中国获批 全球转移性结直肠癌患者带来了新的治疗选 择,并一举成为十余年来转移性结直肠癌治疗 领域全球首个获批针对所有三种VEGFR的选择 性抑制剂,填补了全球市场的空白

本报记者 马亚宁

自然科学奖一等奖

"植物-微生物共生的机理"

长期以来,人们信奉"高投入=高产出",对植 物"好朋友"的认识远远不够。中国科学院分子植 物科学卓越创新中心王二涛研究员带领的团队。 自2013年回国以来,就一头扎进了植物一微生 物共生研究领域,成果亦如金黄的麦穗般丰硕, 并斩获了2024年度上海市自然科学奖一等奖。

两次颠覆传统认知的发现

传统理论认为,糖是植物传递给从枝荫根 真菌的碳源。王二涛团队创新性地融合分子生 物学与代谢流技术,发现脂肪酸——也就是人 们熟知的"油",才是植物传递给丛枝菌根真菌

这一发现在2017年发表于国际顶尖期刊

为核心的传统碳源营养交换观念。"这一成果帮助 科学家们解决了菌根制剂产业中'菌种无法体外 培养'的技术瓶颈,为菌根真菌应用于农业生产奠 定了坚实的基础。"王二涛告诉记者

王二涛带领团队首次绘制出水稻—丛枝菌 根共生转录调控网络,发现调控植物磷直接吸 收的核心模块,也可以同时挖制菌根共生中磷 营养和脂肪酸营养交换的平衡。该领域半个世 纪前提出的"菌根共生如何进行'自我调节'"这 一科学问题被中国科学家破解。

"氮加工厂"原来是这么回事

豆科植物通过与根瘤细菌共生,在植物根

知的。但是,"为什么只有豆科植物能结瘤固氮" 的难题,一直闲扰着该领域的研究者——这关系 到能否将这对"高效组合体"推广到非豆科植物。

研究团队通过实验发现,在豆科植物进化 过程中,豆科植物干细胞关键基因SCR在皮层 细胞表达,另一个干细胞关键转录因子SHR在 维管束表达后移动到皮层细胞,两者结合产生 "神奇魔法"——使豆科植物皮层细胞拥有了分

胞模块植入非豆科植物拟南芥和水稻皮层细 胞时,这些皮层细胞同样具有了分裂能力。

"这项工作发现了控制豆科植物和根

植物微生物"共赢"谱写未来农业新场景

生固氮的理解,为非豆科植物皮层细胞命运的 改造奠定了基础。"王二涛表示,"也为今后减少 作物对氮肥的依赖提供了新思路。" 他兴奋地向记者描述着未来农业的场景

当你驱车驶过一望无际的金黄稻田,会惊讶地 发现这里看不到大量化肥使用的痕迹: 取而代 之的是一种自给自足、与环境和谐共生的生态 农田——饱含活力的土壤中,微生物们在作物 根部忙忙碌碌,为植物输送养分,甚至帮助植物 抵抗病虫害! 本报记者 郜阳