复旦大学赵东元、李伟团队创制有序介孔高分子和碳材料

微观世界"造孔"源自异想天开

国家自然科学奖一等奖

国家科学技术奖今天公布。中科院院士、 复旦大学化学系教授赵东元、教授李伟等完成 的《有序介孔高分子和碳材料的创制和应用》项 目,原创性提出有机-有机自组装思想,创制了 有序功能介孔高分子和碳材料,揭示介孔独特 的物质输运和界面反应规律,获自然科学一等 奖。这是新材料基础研究的突破,也是18年来 上海再获国家自然科学奖一等奖。

为"异想"苦战5年

这是一项微观世界的研究。"介孔材料是 一种多孔材料,孔径在2-50纳米。而功能化 介孔材料,是将介孔材料改性而使其具有不同 的功能",赵东元介绍,介孔材料是20世纪发 展起来的崭新材料体系,具有规则排列、大小 可调的孔道结构及高的比表面积和大的吸附 容量,在大分子催化、吸附与分离、纳米组装及 生物化学等众多领域具有广泛应用前景。

2002年前后,整个介孔材料都局限于无 机材料。赵东元突发奇想:做了这么多无机介 孔材料,能不能创造一种有机的高分子材料,

■ 赵东元(右)在做实验

又软又轻又好用, 还能在国民经济中创造出 非常高的价值? 为了攻克这个难题, 赵东元组 建科研团队,苦战5年。回顾整个过程,赵东 元感慨,实验之所以做成,一是因为"异想天 开", 二是足够幸运。"整个合成过程非常复 杂,就像是在一个黑箱子里乱撞。

如今,在赵东元办公室隔壁的陈列室,留 存着当年课题组成员积累的一本本实验笔记 和博士论文。成员孟岩的博士论文《有序的有 机高分子介孔材料的合成与结构》记录着:起

初,实验怎么也做不出介孔,做出的全都是抱 团的纳米粒子……转机来自一位复旦转专业 本科生。2002年,复旦大学在全国率先施行本 科生转专业制度。酷爱化学的历史系学生顾 栋,申请转系,后选择赵东元作为本科生导师 工作。时隔十几年,如今已是武汉大学教授的 顾栋,忆起2003年10月7日深夜,依然难掩 激动。当天他用一种反常规方法测试得到-"顾栋非常聪明,他提 组非常漂亮的数据。 出把高分子先聚再合成的做法,一下子把步 骤从5个简化成2个。"赵东元在学生的启发 下打开了思路。接下来两个月,大家紧锣密 鼓、调节参数、测试分析,年底就基本得到了 所有数据。2005年,赵东元在《德国应用化学》 上发表文章,在有机-无机自组装的基础上首 次提出有机-有机自组装的新方法,并将实验 方法公之于众。至今已吸引 60 多个国家和地 区 1500 余家科研机构跟踪研究,利用相似方 法研究介孔高分子、碳材料等,发表论文4万 多篇。国际学术界评价这项研究的贡献为"先 驱""里程碑""突破""重要进展"等。

"天生我材必有用"

介孔原是一项基础性研究,如今,赵东元

要把它应用起来。"化学是离工业最近的一门 基础学科,很多研究成果都能实现转化。"赵 东元相信"天生我材必有用",既然能创造出 这个结构的材料,那么肯定会能找到它的用 途,哪怕目前来看还太昂贵。

经不断压缩成本,赵东元团队将科研成 果投入到工业化生产,开展大规模制备。比 如:将介孔材料作为催化剂使用,大大提高重 油转化效率,全国推广后每年可为中石化增 产约150万吨的高质量油品。在民用方面,目 前尚未实现,赵东元也早有一番畅想:介孔材 料在工业上已经作为绝缘隔热材料使用了。 是不是将来也可能应用到衣物上呢? 比如用 纳米孔制作衣服,既轻薄,保暖性又强。他们 现在就正在做一种利用有机高分子介孔材料 做成的液体,"将来抹在身上,薄薄一层,就 能完全隔热,你根本都看不出来,零下三十摄 氏度都不怕。

赵东元自称"造孔之人","相当于拿个凿 子,在你们看不到的微观世界里造孔"。研究 多孔材料多年,他养成了一种职业病-时但凡看到什么材料,他都想把它打成孔。各 种"异想天开",也成为他科研工作的动力和 本报记者 张炯强 马亚宁

国家科学技术进步奖一等奖

水稻遗传

民以食为天, 我国到底有多少水稻种 植资源呢? 荣获 2020 年度国家科学技术 进步奖一等奖的"水稻遗传资源的创制保 护和研究利用",首次给出了一个完整准 确的答案。

水稻是我国最重要的粮食作物之一 优良品种是实现水稻高产稳产基础。上世

摸清水稻家底 培育优质大米

纪 50 年代矮秆水稻和 70 年代杂交水稻品 种的选育与推广, 使我国水稻产量实现二 次重大的突破。至上世纪中后期,水稻育种 一直没大进展, 主要囿于种质资源利用效 率低,品种遗传基础狭窄;品种存在高产与 优质、高产与抗病、高产优质与抗逆性等优 良性状难以兼顾的矛盾等。对此,项目组织 成立中国栽培稻分子育种协作组,在国家 "863""948"等重大、重点项目资助下, 历时 20余年,系统进行水稻遗传资源的收集保 存、研究评价和创新利用,在种质资源保护 和利用平台的构建、重要种质的创制与共 享利用、重要性状的基因发掘与遗传剖析 以及适应不同生态条件的水稻新品种的培 育上取得重要进展。

"我们首先构建水稻种质资源保护与 利用平台,实现种质资源从收集鉴定、种子 处理、入库贮存、安全监测到分发利用的高 效管理和安全保存。共收集水稻遗传资源

20 余万份, 使我国水稻遗传资源保存量增 加130%以上。"项目第一完成人,上海市 农业生物基因中心首席科学家罗利军告诉 记者, 这解决了我国水稻育种和基础理论 研究中遗传资源缺乏问题。

在此基础上,来自全国各地的育种科 学家们共同建立了基于扩大遗传基础的种 质创新和品种选育技术, 解决了水稻育种 中优质与高产、高产优质与节水抗旱等优 良性状难以兼顾的难题。截至目前,项目在 全国范围内分发利用优异资源, 育成的新 品种在国内累计推广达 11.9 亿亩, 获经济 效益 1680.6 亿元。显著丰富了我国水稻遗 传资源, 使我国稻种资源的保有量居世界

据介绍,本项目是由上海市农业生物 基因中心主持,联合中国水稻研究所,中 国农业科学院作物科学研究所等多家单 本报记者 马亚宁

医疗影像

缓解大病"难看"

心脑血管神经和肿瘤等多种重大疾病 影像诊断的金标准,来自以磁共振为代表 的大型尖端医学影像设备。不过,一般患 者不病到膏肓舍不得做。因为国外垄断高 端医疗影像核心技术,我国百万人口磁共 振拥有量不足美, 日等国十分之一, 而讲口 设备价格昂贵。直到今天荣获 2020 年度国 家科学进步奖一等奖的一项上海成果,自 十年前开始萌芽,大病"难看"的尴尬局面 逐步破冰。

这就是上海联影医疗科技股份有限公 司牵头,携手中科院深圳先进技术研究院以 及中国人民解放军总医院、复旦大学附属中 山医院联合完成的"高场磁共振医学影像设 备自主研制与产业化"。以磁共振为代表的 大型尖端医学影像设备是临床医学诊断的 必备工具。但是,由于超导磁体研发难度大, 成像电子学门槛高, 涉及学科门类繁多, 技 术体系精密复杂,加之成像速度慢这一行业 一直难以逾越的瓶颈,研发难度极大。

2007年,项目首席科学家、中国科学 院深圳先进技术研究院郑海荣研究员, 叵 国并建设保罗·C·劳特伯生物医学成像研 究中心,部署研究磁共振成像等前沿技术。 2011年,中心和联影启动了高场磁共振系 统研发项目,用前沿科学技术引领工程创 新,在高端医学影像领域开展创新探索,迄 今双方已成为了紧密联合体。"我们朝着共 同的目标前进,将产学研医深度融入到每 一环节。研究院和企业有机地结合在一起, 有效地降低了科技成果转化的风险,形成 了一种有效的创新生态。"郑海荣说。

攻坚最难技术

'我们选择了最难、也是可以自主可控 的路,在短短几年联合攻关突破了谱仪、射 频功放、梯度功放、梯度线圈、射频发射线 圈、超导磁体等一系列关键技术,实现了 3T 磁共振系统全部核心部件的自主研 "联影医疗董事长张强表示

据介绍,项目通过快速成像理论与方法 等自主创新,另辟蹊径、突出重围,在成像电 子学部件、快速成像方法和高端临床应用等 方面获发明专利 124 项、授权美国专利 11 项,建立了包括理论方法创新与专利群布局 在内的攻防兼备的知识产权体系,有力保障 了本项目产品全面进入国际市场竞争。

"现在不光是医生,青年一线操作技师 都喜欢联影产品。"复旦大学附属中山医院 放射科主任曾蒙苏表示,"21世纪科研不 再是'单打独斗',必须依靠团队合作的力 量。同时,需要多学科创新联动,医疗器械 更是多学科交叉的领域, 离不开产学研医 的深度融合。期待未来高端医学影像设备 成为继高铁后的第二张'中国名片'!"

本报记者 马亚宁

由于发病隐匿,70%-80%肝癌确诊时已为中晚期, 大多人失去手术机会:即便手 术,术后5年转移复发率仍很 高。复旦大学附属中山医院教 授周俭带领团队,在樊嘉院士 指导参与下, 历经近10年研 究完成项目"基于液体活检和 组学平台的肝癌诊断新技术 和个体化治疗新策略", 获国 家科学技术讲步奖二等奖。项 目覆盖肝癌诊治三大临床痛 点:早期诊断、术后转移复发, 以及个性化精准治疗,显著提 高了肝癌病人的总体生存率。

团队成果之一是建立循 环微小核糖核酸 (miRNA)肝 癌早期诊断新技术。长久以 来,甲胎蛋白(AFP)在临床上 主要作为原发性肝癌的血清 标志物,用于原发性肝癌诊断 和疗效监测。但团队在多年临 床应用中发现其存在不足,樊 嘉、周俭找到分子标记物一 微小核糖核酸 miRNA,其诊断 率超80%。如今成果已转化研

制出国际首个肝癌 miRNA 检测试剂盒,在全国 200 多家医院临床应用。miRNA 和 AFP 合在一起 检测,大大提高了早期肝癌诊断准确度。团队研发 循环肿瘤细胞(CTC)预警肝癌转移复发新方案,证 实外周血 EpCAM+CTC 是肝癌转移复发的"种子", 可作为肝癌切除术后转移复发的独立预测指标,比 影像学提前 4.8 月、比 AFP 提前 8.5 个月预警肝癌 转移复发。该研究正式转化成国际首台全自动CTC 分选检测系统, 实现同类进口设备的替代升级,成 为中山医院常规检测,价格降了,病人负担减轻了。

立际上这不是中山医院肝癌研究所首次拿国 家科学技术奖。周俭说:"上有汤钊猷、樊嘉院士打 下的基础,下有不断补充进来的年轻力量,一边还 有科研合作伙伴, 我们的目标就是要提高病人的 生存率。

首席记者 左妍

瘟 诊

家科学技术进

病

生

>2<

硬