上升器

着陆器

返回器

轨道器

中国首

个实施无人

月面取样返

回的探测器

总重量

8.2 吨

长征五号

(

1

>>>返回器降落

于内蒙古四子

王旗着陆场,完

成搜索与回收

温

他们挥舞国旗 唱起《我和我的祖国》

文昌发射场旁的海滩 同样是个不眠夜

遥五运载火箭托载着嫦娥五号探测器 启程奔向月球, 距离中国文昌航天发 射场不远处的海滩上,观景人群挥舞 着国旗,爆发出热烈的欢呼声。此时, 时间定格在 2020 年 11 月 24 日 4 时

时间倒回发射前6个小时。天气 预报页面上, 小雨的图标让人或多或 少有些扫兴, 但寂静夜空中的那轮明 月和稀疏的星星又给人信心——发射 时兴许是个好天气。"你也是来追嫦 娥的吧! 白天已经下过雨了,我看半 夜不会下了。"熟悉当地情况的网约 车司机很是热情,"这将是文昌发射 场投用四年多来,首次在凌晨时分执 行发射任务。

过了安检,进入"观景海滩核心 区",司机特意放慢了车速,灯光照耀 下,"中国梦, 航天梦"的招牌格外显 眼。在海南文昌,航天人扎根于海岛椰 林,矢志逐梦浩瀚太空。"你看右手边

>>>嫦娥五号开始返回地

球,返回器与轨道器分离,

进入地球大气层

的宾馆,起名也很有特色。"司机示意 记者。透过车窗,"飞月客栈"的招牌让 人忍俊不禁。"早就订满了。十个观看 发射的游客里,八名是外地游客。"他 似乎看出了记者的心思,补充说。

在离"被安利"的海滩还有1公里 多,车辆无法再往前了。路灯下,都是 提着帐篷、脚架或是食物的匆匆赶路 人。离发射还有不短的时间,可海滩上 早已搭起了各式各样的帐篷。一对从 浙汀来的老夫妻熟练地铺好垫子,依 偎在一块。"这是我们第一次在夜间看 发射。"海边风大,老先生边说边为妻 子披上外套。"选择发射的时间,要考 虑地月位置关系, 也能减少太阳活动 对嫦娥五号的影响。"阿姨拿着望远镜 瞄向远处的发射塔,接过话头,显然做

23 日 18 时 30 分许,长征五号谣 五运载火箭开始加注液氧液氢低温推 进剂。此后,"胖五"的每一次变化都牵 动着海滩上人们的心。"二联回转平台

塔,一边盯着手机里的直播。

此前, 国家航天局探月与航天工 程中心副主任、探月工程三期副总设 计师、嫦娥五号任务新闻发言人裴照 宇表示,嫦娥五号任务有望创造5个 "中国首次"包括:一是地外天体的采 样与封装,二是地外天体的起飞,三是 月球轨道交会对接,四是携带样品高 速地球再入,五是样品的存储、分析和

激动人心的时刻在千呼万唤中到 来,有人高喊着"嫦娥五号,一路顺 利!""中国加油! 航天加油!"有人挥 舞着国旗,唱起《我和我的祖国》…… 文昌发射场旁的这片海滩, 到外是深 深浅浅的脚印,和坑坑洼洼的月球表 面竟有几分相似。年幼的孩子从妈 妈手中挣脱,朝着火箭的方向奔了两 步……小小的脚印,多像探月工程标 识里,"月"的那两横。

探月"神器"上海"智造"

"太空邮差"是怎样炼成的?

作为探月三期的收官之 战,嫦娥五号将刷新人类无人 月球采样返回任务新纪录。而 轨道器作为贯穿任务全过程 的核心产品,是名副其实的 "太空邮差"——它将在相距 38万公里的地球和月球之 间,构建起一条太空"物流"的 特殊通道,既承担地月往返运 输的任务,将乘客安全地送往 目的地,同时又要在太空中稳 妥地完成货品的"接收""装 箱"、将珍贵的月壤投送回蓝

4时30分"长五"兄送"嫦五"妹九天揽月

公司八院(上海航天技术研究 院)承担了嫦娥五号轨道器的 研制任务。"在整个任务过程 中,轨道器在轨共有5次分 离 6 种组合体状态。承担地 月往返运输、器间分离、交会 对接与样品转移等关键任务, 是目前最复杂的空间飞行器 "八院嫦娥五号探测器 副总设计师查学雷介绍。针对 整个任务飞行状态多、器间接 口多、工作模式多、技术攻关 难、地面验证难,以及运载与 发射场新等特点,研制团队突 破了 4 项关键技术: 高可靠连 接分离技术、月球轨道对接与 样品转移技术、总体优化与结 构轻量化技术、分布式综合

连得稳 分得巧

嫦娥五号探测器由4个部分组合而成,多器 分工合作的状态造就了探测器在太空中不断分 离-组合-再分离-再组合的变形过程,这在我国 航天器中绝无仅有

轨道器要顺利完成地月转移,并将装有样品 容器的返回器带回地球,整个过程涉及5次分离, 包括与火箭分离、与着陆上升组合体分离、与支 撑舱分离,与对接舱上升器组合体分离,与返回 器分离, 既要保证组合状态下器与器连得稳固, 同时又要确保分离过程的安全可靠,这是探测器 研制的难点之一。

轨道器摒弃了传统的舱段间包带连接方式, 创新采用多点高强度分离螺母连接,通过在各分 离面配置不同数量的分离螺母以满足舱段间连 接强度与刚度要求。同时双作动分离螺母包含两 套解锁机构,其中任意一套动作就能确保分离面 每一个分离点的可靠分离。连接稳固、分离可靠 的连接解锁与分离关键技术,成就了嫦娥五号的

精准接 无缝转

嫦娥五号将实现人类首次月球轨道交会对 接。虽同名"交会对接",但嫦娥五号采用的对接 方式与我们所熟悉的载人航天采用的对接方式 有很大的区别。载人航天使用的对接机构学名叫 异体同构周边式对接机构,在对接后可形成一个 80 厘米左右的诵道,方便航天员在其中穿行。而 与近地轨道的任务不同,月球探测对探测器的质 量和空间有严苛限制 嫦娥五号的对接机构必须 做到小而精,其重量要减小到周边式对接机构的 十五分之一,同时,还要具备样品容器捕获,自动

"抱爪机构具有重量轻、捕获可靠、结构简 单、对接精度高等优点。因此,我们在嫦娥五号上 采用了抱爪式对接机构,通过增加连杆棘爪式转

>>> 轨 返 组

合体继续环

月飞行,着

陆上升组合

体则降落至

月面

移机构, 实现了对接与自动转移功能的一体化, 这些设计理念都是世界首创。"中国航天科技集 团有限公司八院嫦娥五号探测器副总指挥张玉花

"所谓的抱爪,其实形象地说,就像我们手握 棍子的动作,两个方向一用力,就可以把棍子牢牢 地握在手中。"嫦娥五号轨道器技术副总负责人胡 震宇介绍。探测器采用的对接机构就是由3套K 形抱爪构成的,当上升器靠近时,只要对准连接面 上的3根连杆,将抱爪收紧,就可以实现两器的紧

器上装有月壤的样品容器转移到返回器中。胡震 字介绍:"我们利用2套倒三角形构形的棘爪,通 过 4 次伸缩, 使得容器逐渐移动到返回器中。相连 后就只能单方向传递,只能前进不能后退。"

捕获、收拢、转移,要在38万公里之外高速运 行的飞行器上实现,难度很高。对接全步骤要在 21 秒内完成.1 秒捕获、10 秒校正、10 秒锁紧。为 此,研制人员做了35项故障预案,从启动开始到 交会对接,全部采用自动控制。

轻如燕 高负载

受探测器整体重量约束的影响, 轨道器在具 备强大的承载能力的同时,还得做到身轻如燕。

为了做到身材比例的完美, 轨道器首次使用 大承载复杂构型轻量化结构: 首次创新使用多次 分离复杂构型;首次使用多冗余路径复合传力结 构, 首次采用大承载复合材料一体成型插层变厚 度承力球冠技术等七项创新技术,结构质量比达 到 9.6%, 真正做到了效能最优。仅仅 46 千克的承 力球冠能够承载 3 吨贮箱, 具备 30 吨的极限承载 能力,真正做到"鸡蛋壳上挂秤砣"。

通过积极创新设计,轨道器内有铮铮铁骨,外 有完美身材,擎得起飞天梦想,稳得住每个动作, 成就了可靠的飞天嫦娥。

分区管 易拓展

轨道器采用分舱段设计,各舱段都有对应的 配电管理、热控管理、信息管理需求,如果按照传 统的模式设计整器电气,需要大量的跨舱段电缆 进行信息交互,对轨道器的重量设计、分离面设 计、电缆网设计以及整器总装造成负担。

为此,研制团队创新提出了分区域管理的分 布式综合电子单机设计思想,通过区域划分和整 体布局,最大可能地减少穿舱电缆与舱段内硬线 连接。同时,团队还创新提出整器电气管理的区域 化、标准化、模块化设计思想,通过制定一系列标 准规范, 使得综合电子系统做到从内到外整齐标 准,灵活组装、易于拓展,跑得稳软件,传得好信 号,点得起火工品,控得住机构。目前分布式综合 电子技术已在多种飞行器推广应用, 走出了一条

本报记者 叶薇 通讯员 王玓瑭

>>>在月球表面,嫦娥五号

进行科学探测、钻取采样、

样品转移和封装等工作

今天凌晨,长征五号 遥五运载火箭在中国文昌 航天发射场点火升空,运 送嫦娥五号探测器至地月 转移轨道。如何让嫦娥五 号安全着陆、如何保证在 太空环境下仪器设备处于 合适的工作温度?来自中 国科学院上海分院的科研 人用一件件"上海智造"给 出了答案。

/ 着陆有保障

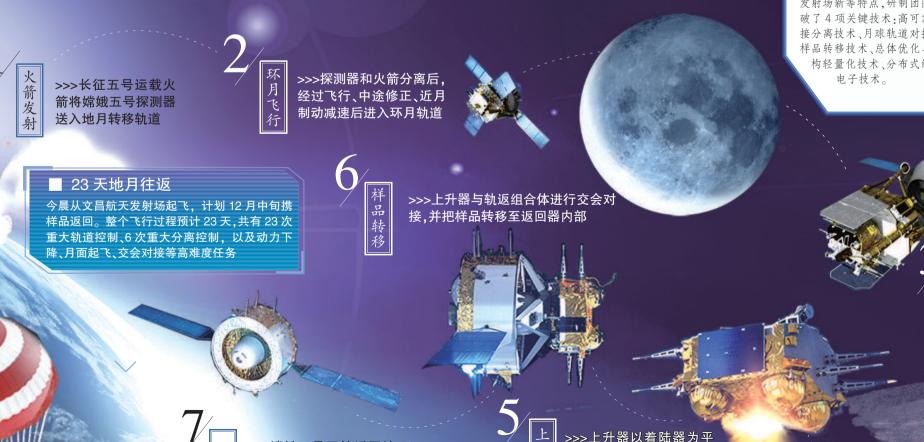
由中科院上海技术物理研 究所负责研发的激光测距测速 敏感器、激光三维成像敏感器是 姿态控制分系统的重要单机,是 探测器能够成功软着陆月球表 面的重要技术保障。

激光测距测读敏咸器将在 探测器着陆月面时提供远程距 离和速度信息,有望实现国际 首次在月球探测器软着陆阶段 使用激光多普勒测速技术进行 三个正交方向速度测量。激光 三维成像敏感器将在探测器悬 停时提供月面着陆区的精确三 维图像。

定位有精度

系统的重要组成部分,中科院上海天文台牵头 的中国甚长基线干洗测量(VLBI)网络与现有 航天测控网共同完成嫦娥五号探测器各飞行 段的测定轨及定位任务。

VLBI 是一项高精度测角技术, 在月球与 深空探测器快速、高精度定轨和定位方面,有 着不可或缺的重要作用。我国的 VLBI 测轨分 系统由北京站、上海站、昆明站和乌鲁木齐站 以及位于上海天文台的 VLBI 数据处理中心 组成 这样一个网所构成的望远镜分辨率相当 干口径为3000多千米的"超级望远镜"。


在嫦娥五号任务中,VLBI 将参与探测器 地月转移段、近月制动段、环月飞行段、着陆下 隆段、月面工作段、动力上升段、交会对接段、 环月等待段和月地转移段等9个飞行段探测 器的相对差分单项测距测量及探测器的轨道 确定和预报;确定着月面着陆点及月面起飞 点的精确坐标,轨道器与上升器交会对接远 程导引, 月地转移段的轨道器与返回器分离

热控有"外衣"

从地球出发到月球"做客",嫦娥五号所处 的超高真空空间环境可不比"在家"来得舒 服——朝向太阳的表面酷热难当,而背向太阳 的表面则异常寒冷。为了保证仪器设备表面温 度外干正常工作状态, 航天器设计师常常通过 在航天器外表面使用不同的太阳吸收率和热 辐射率的涂层来调节其热平衡温度,以保证卫 星在合适的使用温度内工作。

由中科院上海有机化学研究所研制和生 产的有机热控涂层就像在航天器和仪器外表 面穿了件能调控温度的衣服。在嫦娥系列探测 器上,同样使用了有机热控涂层,这些涂层为 航天器的正常工作温度环境保驾护航。

特派记者 郜阳

作为探月工程测控与回收