

科技点亮生活 创新改变未来

哮喘平价药 **蕴藏高新科技**密码

上周最新发布的《2020 上海科技进步报告》显示,上海平均每天诞生 20 家高 新技术企业,每万户企业法人中的高新技术企业数量排名全国第一……高新技术 企业,这个充满科技感的名称,已经融入上海创新型经济发展的科创"底座" 亮眼的高增长数字,带来了实实在在的高科技成果,百姓日常不经意间被 "高新科技"悄然重塑着。上海安必生制药技术有限公司就是其中之一,它用坚 持多年的研发成果转化,为哮喘病患者的小药瓶里增添了一粒粒"平价药"。

科创新地标

原研药的价格居高不下

对过敏性体质的人来说,哮喘、鼻炎, 往往不期而遇,却难以治愈。由美国默沙东 制药公司开发的孟鲁司特钠,是一种白三 烯受体拮抗剂,1998年在美国上市后,用 于治疗和预防儿童和成人哮喘, 也可治疗 过敏性鼻炎。近年来,国内抗哮喘药物市场 规模不断攀升。而孟鲁司特钠作为可单独 长期使用的哮喘控制口服药, 获得了国内

不过,这其中超过70%的市场,是被高 价原研药"顺尔宁"稳稳占据。虽然该种原 研药的专利里已干 2012 年 2 月到期, 但国 内一直未出现通过仿制药一致性评价的产 品进行替代, 所以导致原研药价格居高不 下。 目前, 药店零售价在35元左右一盒, 单 片药价格在6~7元。这对于一个需要长期 服用的药物而言,这个价格显然是偏高的。

借助试点东风成功转型

如何让国内的患者吃得起平价孟鲁司 特钠片,成为企业寻求科技突破的新契机。 然而,拷贝过专利期的原研药,让高价药更 亲民,药效还要不走样,是一条十分专业却 不平坦的路。响当当的研发创新能力是必 备的金刚钻,原料供应商、技术、资本等诸 多难题,一个接着一个。

在当时,与安必生一道走在相同研发 和仿制药道路上的,仅国内就有30多家 企业,而最终走通的,仅此一家。从 2009 年立项研发,到 2016 年获得美国 FDA 批

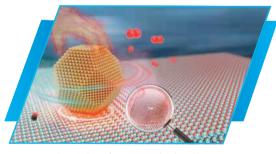
准,再到2018年该产品在国内获批,成为 了国内首家通过仿制药一致性评价的产 品,并与原研药品治疗等效……安必生坚 持的"平价药"之路,一步一个脚印,坚定

特别是,借助药品上市许可持有人 (MAH)制度在上海先期试点的东风,安必 生实现了成功转型,在帮助中国药物制剂 走出国门的基础上,继而致力于与原研药 质量和疗效一致的仿制药研发和生产,"让 国内患者也用得起好药"。该企业研发的孟 鲁司特钠咀嚼片和孟鲁司特钠片,成为上 海药品上市许可持有人制度改革试点公示

降低患者经济负担超亿元

得益于 MAH 制度和过硬的研发实 力,原本不具备药品生产资质的安必生,继

获得上海市第一个 MAH 产品批件后,又 获得了上海市首张药品研发企业上市许可 人营业执昭 经营范围得以涵盖"药品委托 生产"。在2019年度上海市高新技术成果 转化项目"自主创新十强"中,上海安必生 制药技术有限公司入选;2020 年"十三五" 国家科技重大专项"重大新药创制"项目产 品名单中,《重大药物品种孟鲁司特钠咀嚼 片的国产化及国际化研发》赫然在列。


2019年,孟鲁司特钠片被认定为成果 转化项目, 当年销售收入超过2亿元, 帮助 国家节约医保费用、降低患者经济负担超 亿元。公司副总经理雷之航坦言,安必生的 "舒宁安"由于性价比高,得到了良好的市 场反馈, 让许多农村的医疗机构前来采购 他们的产品。"能让更多原本买不起药的患 者享受到平价药,我们感到十分欣慰。

本报记者 马亚宁

原位可塑性 和橡皮泥一样强

沪科研团队的发现有助于原位"智造"纳米材料

■ 利用反应环境原子级调控催化剂活性 界面结构 采访对象供图

纳米材料已经广泛应用于国民经济的各个领域。表 界面结构是决定纳米材料性能的关键因素,但如何调控 这一活性界面,是当今科学界面临的一大挑战。金属颗 粒在负载过程中与基底形成的界面且有随机性 负载完 成以后也缺乏有效手段对界面进行"精修",这使得精确 调控颗粒与氧化物间的活性催化界面成了一个"不可能 的任务"

经过近五年的合作研究,浙江大学、中国科学院上海 高等研究院、丹麦科技大学的研究团队利用环境透射电 子显微镜的原位表征和第一性原理计算,对原子尺度下 -氧化碳催化氧化过程中观察到的催化剂界面活性位点 的可逆变化进行解析,理解了活性界面与反应环境之间 的动态原位相关关系,最终提出并首次实现了界面活性 位点的原子级别精准原位调控。该成果近日在线发表于 国际顶级期刊《科学》(Science)。

发现金颗粒在旋转

负载在二氢化钛表面的金颗粒是将一氢化碳转化为 二氧化碳的重要催化剂,也是工业催化研究中的常见组 合。浙江大学依托其擅长的原位环境电镜开展催化反应 实验,通过原子层面的原位表征,首次发现两大现象:-是看到催化反应时金颗粒发生面内(外延)转动(约 9.5°),首次通过可视化实验直观证明了活性位点位于界 面;二是发现停止通入一氧化碳催化时,金颗粒又神奇 地转回到原来的位置。为了完全确认转动现象,浙江大 学实验团队更是从侧视与俯视两个角度进行了精细审 慎的表征。

提出精确调控界面

中科院上海高等研究院理论团队根据实验结果首先 大胆猜测,诱导颗粒转动的"元凶"是界面吸附的氧,并就 此推测开展了一系列第一性原理及纳米尺度热力学计 算。结果显示,界面缺氧状态下的颗粒与二氧化钛载体紧 密结合的同时,丧失了一定的吸氧能力,转动了一个小的 角度之后的颗粒界面则能提供多且好的吸附氧活性位 点。为了能更好地与吸附氧相结合,适应高氧环境,颗粒 转动由此发生。而在界面氧被活化与一氧化碳反应之后, 颗粒又回到了原有位置以便与载体紧密结合。

基于这样的理论认识, 科研人员进一步提出了通过 更换气体环境与控制温度等来精确调控界面的设计思 路,并最终在原位电镜实验中得以实现。

昭示革命性的可能

中科院上海高等研究院朱倍恩博士介绍, 通常人们 认为固体晶体是一种稳固的材料,对固体晶体材料的调 控必须从其生长过程着手,一旦材料成型再要调控是非 常困难的。"就像一个乐高玩具,如果我们想要重塑其结 构,必须进行拆解才能再构。"但最近十多年的原位研究 显示, 纳米固体晶体材料远没有大家想的那么"硬", 而是 更像橡皮泥一样具有很强的原位可塑性。

这些原位实验现象昭示了一种革命性的原位"智造" 纳米材料的可能性,但是这一切的前提是能合理预测其 变化。 本报记者 郜阳

低碳排放 节水抗旱 上海原创水稻走讲非洲

本报讯(记者马亚宁)走进非洲,选育适合全球化的 低碳节水抗旱稻品种。目前,上海市农业生物基因中心召 开面向非洲的低碳排放节水抗旱稻的培育和栽培技术项 目推进会,探讨节水抗旱稻在非洲的最新进展情况及未来 发展计划。记者了解到,在乌干达的试验中,上海节水抗旱 稻的产量较当地品种提高近30%。

上海市农业生物基因中心罗利军研究员团队,率先提 出"节水抗旱稻"的理念,第一次让水稻"脱水"。"节水抗旱 稻"是兼具水稻高产优质和旱稻节水抗旱特点的一种新型 水稻品种类型,经过近20年的探索,在遗传研究、品种培 育和推广应用中取得重大进展。

特别是,与常规水稻依赖"水种水管"相比,节水抗旱 稻在育种阶段增强了抗旱天性,足以抵御频繁干旱胁迫对 水稻生产的剧烈影响。节水抗旱的独有"天性",让上海节 水抗旱稻不断走出国门,在东南亚越南、缅甸、巴基斯坦、 老挝和非洲的乌干达、加纳、马达加斯加等少水干旱地区, 表现比较强的增产优势 国际影响力不断提高

上海科技馆打造 世界级科学文化地标

本报讯(记者马亚宁)打造世界级科学文化地标,做全 中国最好的场馆科学教育。记者日前从上海科技馆获悉、到 2025年,这座上海科普地标力争构建创新开放、共建共享的 科学教育生态体系,成为上海科创中心建设中独具特色的展 示平台。

全球最受欢迎的博物馆、全国研学旅游示范基地、全 国博物馆十大陈列展览精品奖……在刚收官的"十三五"答 卷上,实现科技馆、天文馆、自然博物馆"三馆合一"的上海 科技馆成绩亮眼。上海科技馆已与全市200余所中小学校、 8家知名国际机构及高校、16家"一带一路"沿线国家科普 场馆以及20家世界一流场馆建立了密切的合作关系。

未来五年,上海科技馆将完成科技馆常设展区更新改 造,聚焦打造高品质的科普展览,持续推出有影响力的临 展。展示前沿科技成果,推出一批高质量临巡展,形成成熟 的线上展览模式,提升科技馆展览吸引力,力推科普爆款。